Implementing a user-friendly format to analyze PRRSV next-generation sequencing results and associating breeding herd production performance with number of PRRSV strains and recombination events

Add to my reading list Remove from my reading list

The open reading frames (ORF)5 represents approximately 4% of the porcine repro- ductive and respiratory syndrome virus (PRRSV)-2 genome (whole-PRRSV) and is often determined by the Sanger technique, which rarely detects >1 PRRSV strain if present in the sample. Next-generation sequencing (NGS) may provide a more appro- priate method of detecting multiple PRRSV strains in one sample. This work assessed the effect of PRRSV genetic variability and recombination events, using NGS, on the time-to-low prevalence (TTLP) and total losses in breeding herds (n 20) that detected a PRRSV outbreak and adopted measures to eliminate PRRSV. Serum, lung or live virus inoculation material collected within 3-weeks of outbreak, and subsequently, process- ing fluids (PFs) were tested for PRRSV by RT-qPCR and NGS. Recovered whole-PRRSV or partial sequences were used to characterize within and between herd PRRSV genetic variability. Whole-PRRSV was recovered in five out of six (83.3%) lung, 16 out of 22 (72.73%) serum and in five out of 95 (5.26%) PF. Whole-PRRSV recovered from serum or lung were used as farm referent strains in 16 out of 20 (80%) farms. In four farms, only partial genome sequences were recovered and used as farm refer- ent strains. At least two wild-type PRRSV strains (wt-PRRSV) were circulating simul- taneously in 18 out of 20 (90%) and at least one vaccine-like strain co-circulating in eight out of 20 (40%) farms. PRRSV recombination events were detected in 12 farms (59%), been 10 out of 12 between wt-PRRSV and two out of 12 between wt-PRRSV and vaccine-like strains. Farms having ≥3 strains had a 12-week increase TTLP ver- sus herds ≤2 strains detected. Farms with ≤2 strains (n 10) had 1837 and farms with no recombination events detected (n 8) had 1827 fewer piglet losses per 1000 sows versus farms with ≥3 PRRSV strains (n 8) or detected recombination (n 10), respec- tively. NGS outcomes and novel visualization methods provided more thorough insight into PRRSV dynamics, genetic variability, detection of multiple strains co-circulating in breeding herds and helped establish practical guidelines for using PRRSV NGS outputs.

Read the full article here