The Guilty Gilt Guide was written with a clear objective – to maximize the whole-herd performance of pig populations by helping gilts to reach their full reproductive potential and produce healthy pigs that reach their full genetic potential during grow-finish.
The open reading frames (ORF)5 represents approximately 4% of the porcine repro- ductive and respiratory syndrome virus (PRRSV)-2 genome (whole-PRRSV) and is often determined by the Sanger technique, which rarely detects >1 PRRSV strain if present in the sample.
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important swine pathogen affecting the global swine industry.
Mycoplasma hyopneumoniae (M. hyopneumoniae) infections continue to result in significant respiratory challenges in the swine industry worldwide. Vaccination for M. hyopneumoniae is commonly utilized, as reduction in bacterial loads and clinical severity in vaccinated pigs have been shown. However, the effect of M. hyopneumoniae vaccination on transmission across different pig populations has been minimally investigated.
Don’t miss any news on PRRS disease control Subscribe now to PRRS.com newsletter
Control of porcine reproductive and respiratory syndrome virus (PRRSV) remains problematic, and economic studies have uniformly shown that PRRSV inflicts major losses on swine health and productivity. A fuller picture of PRRSV genetic relationships and evolutionary origins may be facilitated by whole genome analyses and comparisons of multiple protein coding regions, including the polymerase gene, which is widely used in RNA viral evolutionary analyses. PRRSV viral infection can be divided into three distinct stages: acute infection, persistence, and extinction. Acute infection follows exposure and is characterized by rapid spread to primary sites of replication in lung and lymphoid tissues. PRRSV markedly alters innate immunity and inflammatory and immunoregulatory cytokines in a strain- specific manner. Infection with PRRSV induces immunity that eventually controls the initial infection, eliminates the virus, and establishes memory that is variably protective against future infection.
Standardized terminology for the porcine reproductive and respiratory syndrome virus (PRRSV) status of swine herds is necessary to facilitate communication between veterinarians, swine producers, genetic companies, and other industry participants. It is also required for implementation of regional and national efforts towards PRRSV control and elimination. The purpose of this paper is to provide a herd classification system for describing the PRRSV status of herds, based upon a set of definitions reflecting the biology and ecology of PRRSV. The herd classification system was developed by a definitions committee formed jointly by the American Association of Swine Veterinarians (AASV) and the United States Department of Agriculture PRRS-Coordinated Agricultural Project, and was approved by the AASV Board of Directors on March 9, 2010. The committee included veterinarians from private practice and industry, researchers, and representatives from AASV and the National Pork Board.
Breeding herds, with or without growing pigs on the same premises, are categorized as Positive Unstable (Category I), Positive Stable (Category II), Provisional Negative (Category III), or Negative (Category IV) on the basis of herd shedding and exposure status. Growing-pig herds are categorized as Positive or Negative. Recommended testing procedures and decision rules for herd classification are detailed.
Processing fluids (PF), the serosanguinous fluid recovered from piglet castration and tail docking, were used for porcine reproductive and respiratory syndrome virus (PRRSV) infection assessment. Processing fluid samples from four breed-to-wean herds were compared with standard sampling protocols, demonstrating PRRSV RNA detection in PF at greater frequency than standard schemes.
The aim of this study was to compare the detection of porcine reproductive and respiratory syndrome virus (PRRSV) in due-to-wean litters in commercial swine breeding herds using family oral fluids (FOF) vs. individual piglet serum samples. FOF and piglet serum samples were collected in 199 due-to-wean litters on six farms containing 2177 piglets. All samples were individually tested for PRRSV RNA by RT-rtPCR. A litter was considered PRRSV-positive when PRRSV RNA was detected in ≥ 1 piglet serum sample or the FOF sample. Mixed effect logistic regression with farm as a random effect was used 1) to evaluate the probability of obtaining a PRRSV RNA positive FOF as a function of the proportion of viremic piglets in a litter and 2) the effect of litter size and parity on the probability that a litter would test PRRSV RNA positive in FOF. A Bayesian prevalence estimation under misclassification (BayesPEM) analysis was used to calculate the PRRSV prevalence and 95 % credible interval given the condition that all samples (FOF and serum) tested negative. In total, 34 of 199 litters (17.1 %) contained ≥ 1 viremic piglet(s), and 28 of 199 litters (14.1 %) were FOF positive. When all piglet serum samples within a litter tested negative, 1 of 165 FOF (0.6 %) tested PRRSV RNA positive. The probability of a PCR-positive FOF sample from litters with 10 %, 20 %, 30 %, 40 %, and 50 % within-litter PRRSV prevalence was 3.5 %, 35.1 %, 88.8 %, 99.2 %, and >99.9 %, respectively. The odds of a PCR-positive FOF in a first parity litter were 3.36 times (95 % CI: 2.10–5.38) that of a parity ≥ 2 litter. The odds of a positive FOF result in a litter with ≤ 11 piglets were 9.90 times (95 % CI: 4.62–21.22) that of a litter with > 11 piglets. FOF was shown to be an efficacious sample type for PRRSV detection in farrowing rooms. A risk-based approach for litter selection combined with FOF collection can be used to improve on-farm PRRSV detection with a limited sample size, compared to sampling multiple individual pigs. Finally, the BayesPEM analysis showed that PRRSV may still be present in breeding herds when all samples (serum and FOF) test PRRSV RNA negative, i.e., negative surveillance results should be interpreted with caution.