March

march-1
Top publications | March

Biosecurity in pig farms: a review

The perception of the importance of animal health and its relationship with biosecurity has increased in recent years with the emergence and re-emergence of several diseases difficult to control. This is particularly evident in the case of pig farming as shown by the recent episodes of African swine fever or porcine epidemic diarrhoea. Moreover, a better biosecurity may help to improve productivity and may contribute to reducing the use of antibiotics. Biosecurity can be defined as the application of measures aimed to reduce the probability of the introduction (external biosecurity) and further spread of pathogens within the farm (internal biosecurity). Thus, the key idea is to avoid transmission, either between farms or within the farm. This implies knowledge of the epidemiology of the diseases to be avoided that is not always available, but since ways of transmission of pathogens are limited to a few, it is possible to implement effective actions even with some gaps in our knowledge on a given disease. For the effective design of a biosecurity program, veterinarians must know how diseases are transmitted, the risks and their importance, which mitigation measures are thought to be more effective and how to evaluate the biosecurity and its improvements. This review provides a source of information on external and internal biosecurity measures that reduce risks in swine production and the relationship between these measures and the epidemiology of the main diseases, as well as a description of some systems available for risk analysis and the assessment of biosecurity. Also, it reviews the factors affecting the successful application of a biosecurity plan in a pig farm.

march-2
Top publications | March

The porcine respiratory microbiome: recent insights and future challenges

Understanding the structure of the respiratory microbiome and its complex interactions with opportunistic pathogenic bacteria has become a topic of great scientific and economic interest in livestock production, given the severe consequences of respiratory disease on animal health and welfare. The present review focuses on the microbial structures of the porcine upper and lower airways, and the factors that influence microbiome development and onset of respiratory disease. Following a literature search on PubMed and Scopus, 21 articles were selected based on defined exclusion criteria (20 studies performed by 16S rRNA gene sequencing and one by shotgun metagenomics). Analysis of the selected literature indicated that the microbial structure of the upper respiratory tract undergoes a remarkable evolution after birth and tends to stabilise around weaning. Antimicrobial treatment, gaseous ammonia concentration, diet and floor type are amongst the recognized environmental factors influencing microbiome structure. The predominant phyla of the upper respiratory tract are Proteobacteria and Firmicutes with significant differences at the genus level between the nasal and the oropharyngeal cavity. Only five studies investigated the lower respiratory tract and their results diverged in relation to the relative abundance of these two phyla and even more in the composition of the lung microbiome at the genus level, likely because of methodological differences. Reduced diversity and imbalanced microbial composition are associated with an increased risk of respiratory disease. However, most studies presented methodological pitfalls concerning specimen collection, sequencing target and depth, and lack of quality control. Standardization of sampling and sequencing procedures would contribute to a better understanding of the structure of the microbiota inhabiting the lower respiratory tract and its relationship with pig health and disease.

march-3
Top publications | March

Using commercial ELISAs to assess humoral response in sows repeatedly vaccinated with modified live porcine reproductive and respiratory syndrome virus

Sows in breeding herds are often mass vaccinated against porcine reproductive and respiratory syndrome (PRRS) every few months using modified live vaccines (MLV). Field veterinarians repeatedly report that multiple vaccinated sows test negative in ELISA. Obviously, this creates uncertainty when assessing the compliance of vaccination and the status of sows.